Dicalcium Phosphate Coated with Graphene Synergistically Increases Osteogenic Differentiation In Vitro

نویسندگان

  • Jun Jae Lee
  • Yong Cheol Shin
  • Su-Jin Song
  • Jae Min Cha
  • Suck Won Hong
  • Young-Jun Lim
  • Seung Jo Jeong
  • Dong-Wook Han
  • Bongju Kim
چکیده

In recent years, graphene and its derivatives have attracted much interest in various fields, including biomedical applications. In particular, increasing attention has been paid to the effects of reduced graphene oxide (rGO) on cellular behaviors. On the other hand, dicalcium phosphate (DCP) has been widely used in dental and pharmaceutical fields. In this study, DCP composites coated with rGO (DCP-rGO composites) were prepared at various concentration ratios (DCP to rGO concentration ratios of 5:2.5, 5:5, and 5:10 μg/mL, respectively), and their physicochemical properties were characterized. In addition, the effects of DCP-rGO hybrid composites on MC3T3-E1 preosteoblasts were investigated. It was found that the DCP-rGO composites had an irregular granule-like structure with a diameter in the range order of the micrometer, and were found to be partially covered and interconnected with a network of rGO. The zeta potential analysis showed that although both DCP microparticles and rGO sheets had negative surface charge, the DCP-rGO composites could be successfully formed by the unique structural properties of rGO. In addition, it was demonstrated that the DCP-rGO composites significantly increased alkaline phosphatase activity and extracellular calcium deposition, indicating that the DCP-rGO hybrid composites can accelerate the osteogenic differentiation by the synergistic effects of rGO and DCP. Therefore, in conclusion, it is suggested that the DCP-rGO hybrid composites can be potent factors in accelerating the bone tissue regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells.

Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and comp...

متن کامل

Effects of Graphene Quantum Dots on the Osteogenic Differentiation of Stem Cells from Human Endometrial

Background and aim: Cell-therapy is an important science because of using to treatment of critical-sized bone defects. Recent studies in this field suggest that human endometrial derived stem cells can be a great source. On the other hand, graphene and its derivatives, mainly graphene quantum dots (GQDs) have recently attracted much attention as effective factors in differentiating stem cells t...

متن کامل

Biomimetic Calcium Phosphate-Polycarbonate Composite Scaffolds for Bone Tissue Engineering

Shuang S Chen and Joachim Kohn New Jersey Center for Biomaterials, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States. Statement of Purpose: Large bone defects resulting from trauma, tumor resection, congenital abnormalities or reconstructive surgery are challenging clinical problems that are usually treated with autografts and allografts. However, donor sit...

متن کامل

Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro

Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized ...

متن کامل

Preparation of Calcium Phosphate Coatings on Titanium Using the Thermal Substrate Method and Their in vitro Evaluation

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and dicalcium phosphate anhydrous (Ca(H2PO4)2, DCPA) were coated onto titanium substrates using the thermal substrate method in an aqueous solution containing calcium and phosphate ions at 150◦C with pH values in the range 4–8. Specimens with the HAp and DCPA layer were immersed in a simulated body fluid (SBF) to examine the dissolution and induced HAp grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017